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ABSTRACT 

y \W' 
Laminar boundary-layer heat transfer from a singly-ionized mona- 

tomic gas to a highly cooled wall, with no applied external electric or 
magnetic fields, is analyzed by the similarity solution approach. The gas 
is assumed to be electrically neutral with ambipolar diffusion by ion- 
electron pairs. In addition, equal electron and atom-ion temperatures 
are assumed, and sheath effects are not considered. From existing per- 
fect gas similarity solutions, the number of parameters that need to be 
investigated is reduced to those directly related to ionization effects. 
Solutions for the limiting cases of a large diffusion rate compared to the 
net production rate of ions, and for local equilibrium, are obtained for 
constant Prandtl number and a range of Lewis numbers. An approxi- 
mate prediction method is then suggested to account for variable free- 
stream velocity and ionization effects in a flow over a highly cooled wall. 

1. INTRODUCTION 

This analytical study is concerned with the effect of 
ionization on laminar boundary-layer heat transfer from 
a steady flow of a singly-ionized monatomic gas to a highly 
cooled wall with no applied external electric or magnetic 
fields. A treatment of the problem entails a knowledge of 
the thermodynamic state of the gas, reaction rates and 
transport properties in addition to accounting for the 
effects of variable free-stream velocity, range of flow 
speeds and variable properties across the boundary layer 
as a result of relatively large differences between the 
free-stream and cooled-wall temperatures. 

Previous investigations which are subsequently de- 
scribed have been concerned primarily with stagnation 

point heat transfer. To treat the more general case of 
flow over arbitrary surfaces the similarity approach, of 
various methods used in laminar boundary layer analyses, 
appears advantageous in determining the important 
parameters. Lees (Ref. 1) has pointed out the useful- 
ness of similarity solutions applied on a local basis 
to predict heat transfer to cooled walls from variable- 
free-stream velocity flows of dissociated gases. In treat- 
ing ionization effects, the analysis follows the theory 
of Fay and Kemp (Ref. 2). The gas consisting of atoms, 
ions and electrons, all assumed at the same tempera- 
ture, is taken to be electrically neutral with ambipolar 
diffusion by ion-electron pairs. In the analysis, though 
not restricted to a particular monatomic gas, special con- 
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sideration is given to argon because of its use in many 
studies. 

Although, as expected, the conditions for which simi- 
larity solutions are possible are rather limited, the similar- 
ity approach does indicate the various parameters on 
which the heat transfer to the wall is dependent: free- 
stream conditions as described by free-stream velocity 
and ion concentration gradient parameters; wall bound- 
ary conditions; net ion production rate; transport prop- 
erties as they appear in the Prandtl and Lewis numbers 
and density-viscosity product; and kinetic to total energy 
and ionization to total energy fractions. The similarity 
approach is useful in conjunction with existing perfect gas 
similarity solutions in considering a simpler flow in which 
there are no free-stream velocity and free-stream ion 
concentration-gradients, and low speed flow is assumed. 
Prandtl and Lewis numbers are assumed constant across 
the boundary layer and a range of Lewis numbers is 
investigated. Because of the scarcity of recombination 
rate data over a large temperature range, extending down 
to a highly cooled wall value like 35OoK, two limiting 
cases are considered: in one the diffusion rate in the 
boundary layer is assumed large compared to the net 
production rate of ions (sometimes referred to as frozen 
flow), and in the other the boundary layer is assumed 
to be in local equilibrium. The gas at the cooled 
wall is assumed in equilibrium. Finally, an approximate 
prediction method is presented which incorporates the 
simpler flow predictions to account for ionization effects 
into existing perfect gas similarity solutions which include 
variable free-stream velocity and highly cooled wall 
effects. 

Specific attention is devoted to the correspondence 
between a partially ionized monatomic gas and a partially 

dissociated diatomic gas as has been eluded to by other 
investigators, e.g., Reilly (Ref. 3), and Rutowski and Ber- 
shader (Ref. 4). However, as was noted in a review by 
Ludwig and Heil (Ref. 5) in 1960, no quantitative studies 
of ionization effects have been made which would allow 
a direct comparison to a dissociated diatomic gas. 
In this connection, Talbot's theory of the stagnation-point 
Langmuir probe (Ref. 6) should be mentioned, but only 
frozen flow was considered in treating a partially ionized 
monatomic gas. A later analysis by Park (Ref. 7) for 
partially-ionized argon has been made for the limiting 
cases of frozen and equilibrium flow over a flat plate 
and at  an axisymmetric stagnation point. However, by 
choosing the binary mixture as heavy particles, i.e., 
atoms and ions, and electrons, a comparison to predictions 
from the ambipolar model is difficult. Finson and Kemp 
(Ref. 8) recently extended the theory of Fay and Kemp 
(Ref. 2) to stagnation-point heat transfer and found fair 
agreement with the measurements of Rutowski and 
Bershader (Ref. 4) and Reilly (Ref. 3). 

Non-equilibrium effects such as unequal electron and 
atom-ion temperature and non-equilibrium conditions at 
the edge of the boundary layer and at the wall are not 
considered; in addition, radiation and a molecular de- 
scription of the plasma in a sheath region next to a cooled 
wall where electrical effects become important, are not 
included. The sheath thickness, which is of the order 
of a Debye length, is assumed to be negligibly small 
compared to the boundary-layer thickness. The impor- 
tance of these effects has been investigated to a small 
extent in a boundary layer flow. In particular, Camac 
and Kemp (Ref. 9) found the effects of finite recombi- 
nation rates, lack of equilibriation between electron and 
atom-ion temperatures and the sheath region on the pre- 
dicted transient heat transfer to the end wall behind a 
reflected shock wave in a shock tube to be small. 

2 
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I I. SI MI LAR ITY CONS1 DERATIONS 

I 

For axisymmetric flow of a partially ionized gas with 
no applied external ,electric or magnetic fields the lami- 
nar boundary layer equations, in which both the velocity 
and thermal layer thicknesses are small compared to 
either the body radius r for an external flow or the chan- 
nel radius for an internal flow, are as follows: 

Continuity equation: 

a a - (purz) + r 1  - (pu) = 0 
?X aY 

with 1 = 1 for axisymmetric flow. 

Momentum equation: 

Energy equation: 

Conservation equation for each species: 

(4) 
aci aci a 
ax aY aY 

pu- + pu- = - (-pivi) + wi 

By taking 1 = 0 in Eq. (1) the analysis is applicable to 
flow over a plane surface. For an electrically neutral, 
singly ionized, monatomic gas consisting of atoms, ions 
and electrons, all at the same temperature, the equi- 
librium thermodynamic relations and mass and energy 
fluxes are as follows: 

Equation of state: 

p = (1 + c,) pRT ( 5 )  

Enthalpy, including the ionization energy cIl: 

Diffusive mass flux of ions p,VI for ambipolar diffusion 
by ion-electron pairs (Fick‘s law) : 

Conductive heat flux: 

(7) 

5 -RT 
Q , . =  -kE= -=-J7-4---(-)-(1+%)12] k aHt a uz 

aY ZY 2 

(8) 

5 where 
C,, = R ( l  + c,) 

Diffusive energy flux: 

These relations including intermediate steps leading to 
some of the final forms are discussed in Appendixes A 
and B. Since these relations are conveniently expressed 
in terms of the ion mass fraction, cI,  we need only con- 
sider the ion conservation equation in conjunction with 
the continuity, momentum and energy equations. The 
ion mass fraction is also the fraction of atoms ionized 
which usually appears in the literature as CY. By intro- 
ducing the Prandtl and Lewis numbers defined by 

the energy and ion conservation equations are 

Pr 

3 
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Note that in the Prandtl and Lewis numbers k is the 
thermal conductivity that a chemically frozen mixture 
would have if no chemical reactions took place. In the 
literature it is often referred to as the frozen or transla- 
tional value. The ratio (Pr /Le)  = (“/Dan,)  is also referred 
to as the Schmidt number. 

With the specification of the net production rate of 
ions per unit volume, w,, transport properties and bound- 
ary conditions, Eq. (1, 2, 11 and 12) constitute a system 
of coupled equations for the velocity, enthalpy and ion 
mass fraction distributions. These equations are identical 
in form to those for a partially dissociated diatomic gas 
except for the following: in the energy Eq. (11) the 
expression 

( I+ -  +;T) I 

in the third term on the right side is replaced by 

F,, in Eq. (8) is replaced by 

and the ambipolar diffusion coefficient is replaced by 
the binary diffusion coefficient (e.g., see Lees, Ref. 1). In 
these expressions the subscripts 1 and 2 refer to atoms and 
molecules respectively, and Hq is the heat of formation 
of atoms. 

In the similarity solution approach the velocity, total 
enthalpy and ion mass fraction distributions normalized 
to their free-stream values are assumed similar in terms 
of a new coordinate 7 normal to the surface which for 
low speed constant property flow over a flat plate is 
merely the ratio y/6. For variable property flow over an 
arbitrary surface this new coordinate accounts to some 
extent for property variation across the boundary layer 
and variable free-stream conditions along the surface. 
By combining the Levy transformation with the Mangler 
transformation for axisymmetric flows as was done by 

Lees the y ,x  coordinates are related to the new coordi- 
nates, v ,5  by 

Assuming the profiles are similar in terms of 7, i.e., 

and that H t e  = H f ,  = constant, the momentum, energy 
and ion conservation Eq. (2,11, 12) respectively are trans- 
formed to 

where 

The primes denote differentiation with respect to 7. The 
cooled wall is assumed at a specified temperature SO 

that with the pressure distribution specified, the enthalpy 
and ion mass fraction are known if the gas is assumed 
to be in equilibrium at the wall. For a sheath region of 
negligible thickness, the boundary conditions are as 
follows: 

The total heat flux to the wall is 
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Similarity solutions of Eq. (14, 15, and 16) are only 
possible for rather stringent requirements which involve 
both the wall and free-stream conditions, the net ion 
production rate, and transport properties. In a formal 
manner, these requirements are as follows: 

1. g,, = constant 

2. zrzv = constant 

3. p - - ( f ’ ) 2  independent of 6 k 1 
4. r = (z) (%) independent of 

5. (&) (&) (7) independent of 6 

PP 
Pep? 

6. C = - = C (q), or a constant 

7. Either Pr = Pr (q), or a constant 

and 

or Pr = 1 

either 

or 

UE 
- -+ 0, low speed flow limit 
2Hto 
U; - -+ 1, high speed flow limit 

2 H t ,  
212. 
- = constant if ,8 = 0 
2HtO 

8. Either Le = Le (q), or a constant 

+ 0, un-ionized limit I either 1; 
and - + 1, fully ionized limit 

C I J  or - = constant if r = 0 
Hto ( 

or Le = 1 

5 
,RT 
A 

9. E = -  independent of [ or E < < 1 I 

Though the majority of these requirements would not be 
satisfied for flow over arbitrary surfaces, it is useful to 
discuss them and ascertain what simplifying assumptions 
might be appropriate to appraise the importance of ion- 
ization effects. Though some of these requirements are 
interrelated, for the purpose of this discussion they can 
be treated separately. 

A. Wall-Boundur y Conditions 

Since a constant wall temperature can nearly be real- 
ized in practice by wall cooling, the requirement g,, = con- 
stunt is satisfied. The gas is assumed to be in equilibrium 
at the wall, i.e., the metal wall is assumed to be a perfect 
catalyst. If the static pressure is constant along the sur- 
face, then from the equilibrium composition relation 
Eq. (A-4), the requirement z,,, = constant is also satis- 
fied. Alternately for a cold wall where the ion mass frac- 
tion is vanishingly small, the static pressure need not be 
constant to satisfy Requirement 2. As mentioned previ- 
ously, wall sheath effects are not considered and elec- 
trical neutrality is assumed throughout the boundary 
layer. 

B. Free-Streurn Conditions 

By using Eq. ( 5 )  and (6) the group in Requirement 3 
involving the free-stream velocity gradient parameter p 
can be rewritten as 

p g - (p + [(yy - z,] - p [ &  P - (4 = “{ (::)I 
where 

When the free-stream ionization energy fraction cleI/Ht,  
is negligible, the parameter reduces to the parameter p 
of Back and Witte (Ref. lo), in which g:v was found not 
to vary appreciably with p for accelerated flows (a > 0) 
even as p-+ 00 ;  e.g., for a highly cooled wall, g, 0, 
the effect of infinite flow acceleration was to increase gL 
about 25% above the zero free-stream velocity gradienL 
value. Thus, even with ionization where values of p 

5 
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would exceed ,F, the effect on heat transfer would not 
be appreciable. 

The importance of the free-stream ion concentration 
gradient parameter r is more difficult to determine. A 
limiting case is that for which the free-stream ion mass 
fraction is assumed constant (frozen flow) so that r = 0 
and C , ~ Z / H ~ ~  remains constant at its initial value. This 
would correspond to the largest driving potential and 
thus, diffusive energy flux to a cooled wall from an ac- 
celerated flow ( p  > 0) where the free-stream ion mass 
fraction for isentropic flow of a gas in equilibrium dimin- 
ishes in the flow direction (e.g., see Witte, Ref. 11). How- 
ever, as will be seen in Section 111-A, the predicted 
conductive heat flux, which is essentially independent of 
Lewis number, diminishes with c, ,Z/Ht, .  The net effect 
of these opposing trends on the predicted total heat flux 
is dependent on the Lewis number. For Lewis numbers 
less than unity, the predicted total heat flux would be less 
for the larger free-stream ionization energy fraction, as 
can be seen in Fig. 1; conversely, for Lewis numbers 
greater than unity, the predicted total heat flux would 
be higher. Thus, for accelerated flows over cooled walls, 
solutions with I' = 0 place a lower limit on the predicted 
total heat flux for Le < 1 and an upper limit for Le > 1. 
Thesc trends would be reversed for decelerated flows 
( p  < 0) since then the free-stream ion mass fraction for 
isentropic flow of a gas in equilibrium would increase 
in the flow direction. 

C. Net Ion Production Rate 

Rather than specifying the net ion production rate w,  
in the boundary layer, which requires both a knowledge 
of the ionization and recombination processes and how 
the rates, in particular the recombination rate, vary 
over the temperature range of interest, two limiting cases 
can be considered. These correspond to assumptions that 
(1) the net ion production rate in the boundary layer 
is negligible compared to the diffusion rate across the 
boundary layer, or that (2) the rates are sufficiently large 
so that equilibrium exists. For the equilibrium case the 
ion conservation Eq. (16) is replaced by the equilibrium 
relation Eq. (A-4). 

D. Transport Property Dependence 

Requirements 6-8 depend on the variation of the trans- 
port properties k, p, and D,,,,, with temperature and also 

on composition when the gas is partially ionized. A few 
methods are described in Appendix C from which pre- 
dictions of these properties have been made. In particu- 
lar, Fig. 2 and 3 show predicted values of thermal 
conductivity and viscosity, respectively, for argon at a 
pressure of 0.1 atm. Shown in Fig. 4 are predicted values 
of C ,  Pr and Le over a wall to free-stream temperature 
range from 350 to 12,000OK. Of these terms the one that 
varies the most over this temperature range is C .  For 
temperatures up to about 8000OK, C diminishes from its 
wall value like C = (T,/T)l-W since pa (l /T) and p T " ;  
for atomic argon, 0 E 0.75. For temperatures above about 
8000OK the predicted rapid reduction in p as indicated 
in Fig. 3 augments the decrease of C with temperature. 

An estimate of the effect of C varying across the bound- 
ary layer was made by Back and Witte (Ref. 10) from 
the stagnation point heat transfer predictions of Bade 
(Ref. 12) for a high temperature unionized monatomic 
gas with the variation of C taken into account. Bade's 
heat transfer predictions were found to be nearly ap- 
proximated by taking C equal to unity in the boundary 
layer equations and setting p,opIo = pepLr in the heat flux 
expression. This approximation was previously employed 
by Lees (Ref. 1). To provide better agreement between 
the approximate method and Bade's values, in particular 
for highly cooled walls gIO+ 0, a small correction factor 
(p,,,pto/pepLp) O . l  can be applied; this same factor appears 
in the Fay and Riddell analysis (Ref. 13). These observa- 
tions indicate that taking C = 1 in the boundary layer 
equations and then correcting the wall heat flux predic- 
tion by the factor ( p,t,p.Io/pcpLp) n.l for accelerated flows 
over highly cooled walls might be a reasonable approxi- 
mation with ionization effects. Even though the variation 
of C across the boundary layer is larger, the predicted 
heat flux is rather insensitive to the magnitude of the C 
variation. This is indicated by the small exponent in the 
correction factor. For decelerated perfect gas flows 
the effect of variable C has not been studied for highly 
cooled walls so that the correction factor may not apply. 

For flow over an arbitrary surface, C varies along the 
surface as well as across the boundary layer. Though 
Requirement 6 is not satisfied, the relatively weak de- 
pendence of the predicted heat flux on the variation of C 
would be even less, since the magnitude of the varia- 
tion of C across the boundary layer would decrease in 
the flow direction for an accelerated flow over a cooled 
wall. 

6 
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Fig. 1. Dependence of the heat transfer parameter on 
lewis number and free-stream ionization energy 

fraction for Pr = 2/3 and a highly cooled wall, 
g, = 0, z,,, = 0. The predictions are for the 

diffusion rate assumed large compared 
to the net production rate of ions 
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In view of analytical predictions of the transport properties in the Prandtl and 

Lewis numbers at high temperatures where ionization effects become important, 
discussed in Appendix C, it seems compatible with our present knowledge to take 
the Prandtl and Lewis numbers constant across the boundary layer. The refine- 
ment afforded by including the actual variation of the Prandtl and Lewis numbers 
may be made as good transport property measurements become available. Also, 
as shown in Fig. 5 for argon, the parameter E is small compared to unity over the 
temperature range of interest so that Requirement 9 is nearly satisfied. 
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111. IONIZATION EFFECTS ON HEAT TRANSFER FROM A LOW SPEED FLOW 
WITH CONSTANT FREE-STREAM VELOCITY 

To investigate the importance of ionization effects on 
the total heat flux the previous observations are helpful 
in determining appropriate simplifications. Since the ef- 
fect of flow acceleration would not be appreciable as 
discussed in Section II-B, the free-stream velocity gradi- 
ent parameter ,f3 is taken equal to zero. As a consequence 
it can be shown that the free-stream ion concentration 
gradient parameter r is also zero which implies that the 
free-stream ionization energy fraction creZ/Ht, = con- 
stant. These conditions are satisfied exactly for external 
longitudinal flow along a cylinder and approximately for 
flow in the entrance region of a circular tube where the 
boundary layer thickness is small compared to the tube 
radius. The counterpart in plane flow by taking 1 = 0 is 
flow over a flat plate. For an isothermal wall the surface 
conditions are gw = constant and zI,, = constant. Further 
it is assumed that C = 1 and Le = constant, but not re- 
stricted to unity. A correction for C variable, discussed 
previously, is made later. To retain a dependence on both 
the Prandtl and Lewis numbers since they appear in 
both the energy and ion conservation Eqs. (15 and 16) 
the Prandtl number is taken as a constant, but not equal 
to unity, and low speed flow is assumed uz/2Ht,+ 0 so 
that the term in Eq. (15) involving u3'2Ht, is zero. Two 
limiting cases are considered: (1) the dihsion rate is 
assumed large compared to the net ion production rate, 
wI, and (2) the boundary layer is considered to be in 
local equilibrium. Since E < < 1, E is neglected compared 
to 1 in the first case; however, in the second case it is 
included for the reason discussed in Section III-B. 

2. Local equilibrium: 

{ [l + (Le - 1) A] g'}' + PT (fg') = 0 (23) 

in which 

A = [ 1 + + ( i k ) 2  cr(1-CI) I-' 
For the equilibrium case the ion conservation equation 
is not needed and in Appendix B, Eq. (23) is derived 
by expressing the ion concentration gradient in terms of 
the enthalpy gradient. The boundary conditions for both 
limiting cases are given by Eq. (17) with g,,, = constunt 
and zI,,, = constant. 

A. Solution for Diffusion Rate Large Compared to 

The solution of Eqs. (20) and (21) is accomplished with 
f known from the Blasius solution of Eq. (19) (Ref. 14). 
The dimensionless enthalpy and ion mass fraction gradi- 
ents at the wall are respectively 

the Net Ion Production Rate 

(25) -- - (2)nF2 
d W  

With the preceding assumptions the transformed - z l l ~  

Eq. (14-16) reduce to the following: 
The functions F1, F,, and F, are given by 

1. Diffusion rate large compared to the net production F ,  = [ (2)% la ( $ ) p r  d 9 1 - l ~  0.332 Pr'A (26) 
rate of ions: 

F ,  = [ (2)'h lom d 9 1 - l ~  0.332(g)'" (27) 

Pr 
Le z:'+ -fi: = 0 

The function F, can be approximated as shown from the 
Pohlhausen solution (Ref. 14). By evaluating the integral (21) 

11 
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in the similar function F, for values of Pr/Le less than 0.6, the approximation 
shown is accurate to within a few percent for values of Pr/Le to $5, as it is also 
for values of Pr/Le to 15 (Pohlhausen solution, Ref. 14). By inserting the relations 
Eq. (24-27) in Eq. (18) with C = 1 (i.e), pzvplo = pepe) and then correcting for C 
variable by the factor (pIcplc/pcpLr)". l  discussed in Section 11-D, the total heat flux 
to the wall is 

0.332 
qTW = ( H i o  - Hlu)  (E)'" [ 1 + (1 - - ' I w )  gw) (g) H t o  X ]  

with 

The heat transfer relation can be written in terms of familiar parameters for the 
flow considered in which [ = prpcurrEx as 

In Fig. 6, the integral F ,  and function x are shown for Pr = 35 over a range of 
Lewis numbers from 0.2 to 2.0 In evaluating F, and F,, the tabulated values from 
the Blasius solution, f n  and f"H as a function of qI, (Ref. 14), could be used by 
replacing f ,  f" and 7 by 

respectively. A 5-point Gauss-Chebyshev integration procedure was used. 

The importance of ionization effects is contained in the second term on the 
right side of Eq. (30); for an un-ionized gas it is zero. In Fig. 1 the heat transfer 
parameter from Eq. (30) is shown by the solid curves for g,,, = 0, z , , ~  = 0 and 
Pr = 35 over a range of Lewis numbers from 0.2 to 2.0 and free-stream ionization 
energy fractions from 0 to %. Also shown in Fig. 1 by the dashed curves is the 
heat transfer parameter for the conductive contribution to the total heat flux 

with 

1 R = -[1 1 + - ( L e  Pr - 1 ) F ,  
Leqi Le 

12 
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This contribution is essentially invariable with Lewis 
number, indicating a small effect of diffusion on the tem- 
perature distribution. However, this contribution is re- 
duced as seen in Fig. 1 as the fraction of the total 
enthalpy in the free-stream invested in thermal enthalpy 
1 - c le l /Ht ,  decreases. The diffusive contribution, the 
difference between the solid and dashed curves, increases 
both with Lewis number and free-stream ionization 
energy fraction; Le., driving potential. The sum of these 
contributions (solid curves) indicates the heat transfer 
parameter to decrease with increasing free-stream ioniza- 
tion energy fraction for Lewis numbers less than one. 
This is a result of the conductive contribution decreasing 
more than the diffusive contribution increases. For Lewis 
numbers greater than one, the reverse is true, SO that 
the heat transfer parameter increases with the free-stream 
ionization energy fraction. Theoretical predictions of the 
Lewis number based on the ambipolar diffusion coeffi- 
cient results in values less than one. These are shown in 
Fig. 4 and discussed in Appendix C. 

Fay and Riddell (Ref. 13), in predicting stagnation 
point heat transfer from air including dissociation effects 
found the ratio 

H ,  is the dissociation enthalpy. In their calculations the 
Prandtl number was taken equal to 0.71 and a range of 
Lewis numbers from 1 to 2 was investigated. The expo- 
nent n was found to be equal to 0.63 for a frozen bound- 
ary layer with a fully catalytic wall and 0.52 for an 
equilibrium boundary layer. For Pr = 35 which differs 
little from the value of 0.71 which was used by Fay and 
Riddell for air, the predicted values of x from Eq. (29) 
can be approximated within a few percent by 

0.63 x N (Le - 1) for 0.2.L Le I 2 . 0  (33) 

This close agreement is expected for Lewis numbers from 
1 to 2 due to the identical form of the equations solved. 
However, what is rather surprising is the validity of the 
Fay and Riddell prediction for Lewis numbers less than 
unity if the dissociation enthalpy is replaced by the ion- 
ization energy cleZ, and the group (1 - zlw)/(l - gto) 
included as in Eq. (30). 

B. Solution for Local Equilibrium 

Unlike the case where the diffusion rate was assumed 
large compared to the net production rate of ions, an 
analytic solution of Eq. (23) for the enthalpy gradient 
at the wall is not possible since the dependence of h on g 
through the ion mass fraction makes the equation non- 
linear. To indicate the variation of h values are shown 
in Fig. 5 for argon at a pressure of 0.1 atm over a tem- 
perature range of 350 to 12,000OK. The values of A were 
calculated by using the values of e ,  also shown in the 
figure (i.e., the requirement that E < < 1 was not made 
because of the large variation of h with temperature), 
and the ion mass fraction was obtained from the equi- 
librium relation Eq. (A-4). Thus, it is necessary to resort 
to a numerical solution for a particular monatomic gas 
and this involves either the specification of the wall or 
free-stream conditions in addition to g,o and zIto. 

A few numerical calculations have been made for ar- 
gon. For a wall temperature of 350°K and a pressure 
of 0.1 atm, solutions were obtained for free-stream tem- 
peratures of 8000, 10,000, and 12,000OK for which the 
free-stream ionization energy fraction was 0.043, 0.307, 
and 0.614, respectively. These solutions for Pr = % that 
span a range of Lewis numbers from 0.2 to 2.0 were 
obtained by solving Eq. (23) numerically with a fourth- 
order Runge-Kutta method on an IBM 7094 computer 
with f known from the Blasius solution (Ref. 14). 

For local equilibrium the predicted total heat flux is 
due only to conduction since at the cold wall the diffusive 
energy flux is zero. Thus, the heat flux to the wall from 

1 3  
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Eq. (18) with C = 1 (i.e., plcplo = pepe) and then correct- 
ing for C variable by the factor ( plop.lu/pepe)".*discussed in 
Section 11-D is 

(34) 

Values of [&./(2)'h]/(l- gIc) are shown in Table 1. 

C. Comparison of Predictions 

A comparison of the limiting cases, the diffusion rate 
assumed large compared to the net ion production rate 
and local equilibrium assumed, is shown for argon in 

Fig. 7 for some of the conditions at which the equilibrium 
solution was obtained. The difference between the pre- 
dictions is small. Although the solutions in which local 
equilibrium was assumed were restricted to argon at  a 
pressure of 0.1 atm and a wall temperature of 350°K, 
the close agreement for the few calculations made sug- 
gest that one relation, namely Eq. (30) because of its 
analytical form, is adequate to predict heat transfer. 

Of note is that for the local equilibrium solution the 
corresponding equilibrium relation to Eq. (A-4) and thus, 
the energy equation to Eq. (23) for a partially dissociated 
distomic gas are different. However, it turns out that for 
a partially ionized monatomic gas the difference between 
the limiting cases considered is small and exhibits the 
same trend as that found for a partially dissociated dia- 
tomic gas. 

- 
0 1.4 I I 

Pr=2/3 T,=35O0K p =o. la tm 

1.2 

1.0 

0.8 

LEWIS NUMBER, Le 

Fig. 7. Comparison of the limiting cases for argon a t  a pressure of 
0.1 atm, wall temperature of 350°K and Pr = 213 



r.. 
O K  

I 8,000 1 0.043 I 0.0417 I 0.2850 I 0.2862 I 0.2876 I 0.2891 I 0.2910 I 
Le = 0.25 Le = 0.6 Le = 1.0 b = 1.4 Le = 2.0 cr,l 

9.. H , *  I 
10,000 

12,000 

IV. HEAT TRANSFER PREDICTION WITH VARIABLE FREE-STREAM VELOCITY 

~ ~ 

0.307 0.0228 0.2552 0.2710 0.2876 0.3033 0.3255 

0.6 14 0.00835 0.1 936 0.2404 0.2876 0.3304 0.3885 

Having investigated the importance of ionization ef- 
fects on the total heat flux in the previous section, the 
usefulness of that analysis in predicting heat transfer to 
an arbitrary surface is now considered. For an un-ionized 
perfect gas, Requirements 1-9 in Section I1 are reduced 
to those discussed by Back and Witte (Ref. lo), for which 
application of similarity solutions on a local basis to pre- 
dict the conductive heat transfer to arbitrary surfaces is 
a reasonable approximation. This simplification is pos- 
sible since the dimensionless enthalpy gradient at the 
wall gL, to which the heat flux is related, does not vary 
appreciably with the free-stream velocity gradient pa- 
rameter p for accelerated flows over highly cooled walls. 
The prediction from Back and Witte (Ref. 10) for an un- 
ionized gas is 

In this expression the length x' was introduced to cast 
the heat transfer parameter in a familiar form 

1' PepeUeT21 

(36) - t -  - X =  
pePeUeT2' peP.,UeT21 

The group gw/(l - g,) is determined from Fig. 4 of 
Ref. 10 for values of the free-stream velocity gradient 
parameter p = (Tt , /Te)  p and wall to total enthalpy ratio 
g,. Kemp et al. (Ref. 15) have shown that the group 
&/(l - g,) is only slightly affected by values of u2/2Ht, 
ranging to %; i.e., over a substantial flow speed range, 
and mainly affected by p .  The adiabatic wall enthalpy, 
Ha,, can be calculated from a recovery factor equal to 

15 
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the ?4 power of the Prandtl number (e.g., see Kemp et al., 
Ref. 15). 

Since the difference between the predictions for the dif- 
fusion rate assumed large compared to the net ion pro- 
duction rate and for assumed local equilibrium was found 
to be small, the use of one relation seems sufficient. Al- 
though the prediction is an approximation, it nevertheless 
is useful in analysis and comparison to experimental re- 
sults. It also involves a minimum amount of calculation 
time. 

TO account for ionization effects the total heat flux 
might then be obtained by including the term in Eq. (30) 
that contains the effect of ionization. The prediction is 

V. CONCLUSIONS 

Guided by existing laminar boundary-layer heat- Lewis numbers based on the ambipolar diffusion coeffi- 
transfer predictions from similarity solutions for a vari- 
able free-stream velocity, perfect-gas flow over a highly 

cient are less than unity. 

cooled wall, an estimate of the additional effect of ioniza- 
tion on heat transfer was made for a singly-ionized mona- 
tomic gas. Solutions for the limiting cases of the diffusion 
rate assumed large compared to the net ion produc- 
tion rate and for assumed local equilibrium indicate a 
predicted reduction in the heat transfer parameter below 

The solutions also reveal that the Fay and Riddell 
stagnation-point heat transfer predictions for air includ- 
ing dissociation effects are equally applicable for partially- 
ionized monatomic gases even though their predictior~s 
were made only for Lewis numbers from 1 to 2. 

that for an un-ionized gas for Lewis numbers less than 
unity. The magnitude of this reduction was found to Finally, an approximate prediction method which ac- 
increase both with increasing free-stream ionization counts for ionization effects in addition to frec-stream 
energy fraction and decreasing Lewis number. Predicted velocity gradients and highly cooled walls is suggcsted. 

16 
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APPENDIX A 
Thermodynamic Properties 

The equilibrium thermodynamic relations of an elec- 
trically neutral, singly-ionized, monatomic gas with all 
species at the same temperature needed in the analysis 
are the equation of state and expressions for the enthalpy 
and composition. 

The equation of state for the mixture of atoms, ions 
and electrons each assumed to behave like a perfect gas 
results in Eq. (5). 

on the statistical weights or degeneracies g, of the par- 
ticles at different energy levels E ,  and temperature. A 
more convenient form is to write the zero-point energy 
of the particle (ionization energy) separately. 

Eq. (A-2) can then be written in the more familiar form 
From statistical mechanics the enthalpy is 

The contribution H ,  I p c  is due to electronic excitational 
effects and depends on the ion mass fraction cI and tem- 
perature. It is generally small; e.g., see Witte’s Ref. 11 
discussion on values for argon, so that essentially only 
ionization effects are important up to those temperatures 
at which the gas can be considered singly ionized. The 
enthalpy is then given by Eq. (6). 

The equilibrium composition relation (Saha equation) is 

T in O K  and p in atmospheres. The Qint’s are internal 
partition functions for the particles indicated and depend 

T54 

1 - c: P 
-- “ - B < -  e - I / R T  (A-4) 

In particular for argon, the only significant terms in the 
function 5 as noted by Witte, Ref. 11, are 

Thus, Eq. (A-4) with 5 obtained from Eq. (A-5) consti- 
tutes the equilibrium relationship between ion mass frac- 
tion, pressure and temperature used in the equilibrium 
solution for argon. This form requires a small amount 
of additional calculation time than if the product B5 is 
evaluated at some average value over the temperature 
range of interest as done in many investigations. Obser- 
vation of < from Eq. (A-5) for argon indicates it to in- 
crease with temperature. At low temperatures, T -+ 0, 
<+ 8, and in particular at 12,000°K, 5 = 11.4. 

17 
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APPENDIX B 
Derivation of Some Equations 

The conductive heat flux relation Eq. (8) is obtained 
directly from the enthalpy expression Eq. (6), by differ- 
entiation. 

The diffusive energy flux q d  is obtained by expanding 

The diffusion velocity V I  is taken equal to V ,  since the 
ions and electrons are assumed to diffuse as pairs. By 
using the following relations, Eq. (B-1) can be written 
as Eq. (9). The enthalpies per unit mass of the species are 

From the condition that the net diffusive mass flux is zero 

By using the relations n, = n, (electrical neutrality), 
mE < < m,, md s m,, and V i  = VE,  Eq. (B-3) becomes 

Thus, inserting Eqs. (B-2) and (B-4) into Eq. (B-1) and 
noting that 

the result is 

The gas constant R = K/m,. Inserting Fick‘s law, Eq. (7) 
into Eq. (B-5) gives Eq. (9). 

In the local equilibrium solution in Section 111, the 
energy Eq. (15) for C = 1, PT = constant, and u f / 2 H t , - +  0 is 

The non-dimensionalized ion mass fraction gradient Z: 
can be related to g’ as follows. Since the ion mass fraction 
depends on temperature and pressure, Eq. (A-4) its gradi- 
ent across the boundary layer where the pressure is 
constant is 

By combining aT/ay obtained from differentiation of the 
enthalpy relation Eq. (6) with Eq. (B-7) and solving for 
ac,/ay there results 

Transforming from y to by Eq. (13) and non- 
dimensionalizing c, and H in Eq. (B-8) the energy 
Eq. (B-6) then becomes Eq. (15) for low speed flow 
(g  = H t / H t ,  = H / H , )  with 

18 
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I 
I To evaluate (aCi/aT)p the equilibrium relation Eq 

is used and the result is 
(‘4-4) 

B-10) 

The contribution of the degeneracies of the species at 
different energy levels is u = RT/Z [ ( T / [ )  (&/dT)] .  It 
turns out that this contribution for argon with d( /dT 
obtained from Eq. (A-5) is negligible; i.e., u < < 1 for 
temperatures up to 15,000°K. Thus, h is given by Eq. (23). 

c , ( l  - c:) I (%),, = T - - - ( l + E + l J )  2RT 

APPENDIX C 
Transport Properties 

To determine the variation of the Prandtl and Lewis 
numbers as well as C = ppL/pepe with temperature and 
pressure, a knowledge of the thermal conductivity, vis- 
cosity and ambipolar diffusion coefficient is needed. Until 
that time when experimental measurements of these 
properties for monatomic gases extend into the region 
where ionization effects become important, use of ana- 
lytical methods is required. Two such methods are con- 
sidered briefly to illustrate the effects. In one method 
the Chapman-Enskog theory (Ref. 16) is used and the 
other is an approximate mixture rule proposed by Fay 
(Ref. 17) from a simple kinetic theory development. The 
latter method offers the advantage of visualizing the pre- 
dicted trends and can possibly provide a method of cal- 
culating the transport properties for those monatomic 
bases for which rigorous predictions from the Chapman- 
Enskog theory have not been made. It is described 
briefly. 

From the mixture rule of Fay the thermal conductivity 
and viscosity are given by 

Xiki 
i SXjGij 

k=x- 
i 

Xipi 
p =?zx,c,, 

i 

where 

2mj ?h Q i j  

In these expressions Xi, ki and p i  are the mole fraction, 
thermal conductivity and viscosity of the pure component 
i. The binary diffusion coefficient, thermal conductivity 

1 9  
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and viscosity for the monatomic component i are related 
to the rigid elastic sphere cross-section Qi j by 

mi + mi) 'h 
KT] (c-3) 

3 
16 (ni + nj) Q l j  

D.. = - 
" 

In Ref. 2 Fay and Kemp' give the following form of the 
mixture rule which essentially weighs the contributions 
from the atomic gas k.,, and a singly, completely ionized 
gas, k, 

k. + l+(%)"(+)(*)(e) 
Because of the large mass of the ions compared to the 
electrons the contribution of the ions to the thermal con- 
ductivity is negligible. If the viscosity of the mixture is 
calculated from the mixture rule in a similar manner the 
result is 

u .I , .- 

P =  1 + (  CI )(") 
1 - CI Q A A  

P S  + 
1 +(?)(E)(%) 

The contribution of the electrons to the viscosity is neg- 
ligible due to their small mass. Similar to the thermal 
conductivity, the viscosity of the atomic and singly, com- 
pletely ionized gas is denoted by pA and px ,  respectively. 

'In Eq. (3.18) for Ref. 2 the ratio nt,;/ni, should be corrected to 
(rnF/rnr)'i as it appears in Avco-Everett Research Laboratory Rc- 
port No. 166, March 1963. 

For atomic argon experimental measurements of thermal 
conductivity and viscosity are shown in Fig. 2 and 3 along 
with power law approximations of Amdur and Mason's 
values (Ref. 18) 

( k J  = 5.8 X 10.' TG cal/sec-cm-"K (C-'8) 

(P,~) = 3.1 X lo-'; Tw gm/cm-sec (C-9) 

T is in OK. From experimental end wall heat transfer 
measurements in a shock tube for atomic argon, before 
the ionization relaxation time, Camac and Feinberg 
(Ref. 19) found k.,,Tx up to about 75,000"K. 

For a singly, completely ionized gas mixture of ions 
and electrons Chapman (Ref. 20) has calculated the first 
approximation of p8 and k,y according to the Chapman- 
Enskog theory for inverse square-law interaction. The 
electronic contribution to the viscosity is negligible com- 
pared to the ionic contribution so that ps is given by 

with 

1 V f l  In (1 + vZ1) - ~ 1 + V i I  

For argon the viscosity is 

T>$ 
A2 ( 2 )  

( p L s ) A r  = 4.8 X gm/cm-sec (C- 11) 

In the above relations and in subsequent ones, e is the 
electronic charge, T in OK and nR in electrons per cubic 
centimeter are to be used with the numerical constants. 
The cutoff impact.parameter vo, is 

The average distance between particles is d which was 
taken as l/nE1h. The thermal conductivity can be ex- 
pressed as the sum of the ionic and electronic con- 
tributions 

(C-14) 
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Even though the ionic contribution is negligible com- 
pared to the electronic one, k,s, is reduced below the 
value k ,  if only electrons were present by the second term 
in Eq. (C-13) 

- DALGARNO 25 SEMI-EMPIRICAL 
METHOD UP TO 5,000 OK 

FROM EMPIRICAL RELATION, - -FAY AND o=~/(&=I.44 To.'6, 
KEMP CALCULATED FROM IONIC 

MOBILITY EXPERIMENTS BY - 
HORNBECK AT 300OKRef.33) 

NBS 27 FROM VISCOSITY VALUES 
AMDURAND MASON I 8 V i 0  Eq. c-5 

CANN e+ 32 FROM CHAPMAN-ENSKOG 
THEORY (Ref. 16) 

(C-15) 
1 k ,  = 0.3OkE = 0.30 

(C-15) 
J 1 4 (m,mlp 

19 K 
k ,  = 0.3OkE = 0.30 - 

Chapman has estimated that by including further ap- 
proximations in the Chapman-Enskog theory, the overall 
increase in viscosity ps and thermal conductivity k ,  should 
not exceed about 25% and 40%, respectively. 

Another specification of the thermal conductivity is 
given by Spitzer (Ref. 21, pp. 87 and 88) who modified the 
thermal conductivity for a Lorentz gas so that the effec- 
tive value for a singly, completely ionized gas is given by 

T% 
k,? = 4.4 X IO-'" - cal/sec-cm-OK In A (C-16) 

The Debye length Z,, was used in the cutoff parameter 
(Ref. 21 p. 72) so that 

((2-17) 

For conditions such that the Debye length is smaller than 
the average distance between particles, Fay and Kemp 
(Ref. 2) suggest replacing A with % v,,, in Eq. (C-16) when 
vO1 L l 6 ~ ,  i.e., for low temperature and high electron 
density. 

Shown in Fig. 2 and 3 are predictions of k,y from 
Spitzer, Eq. (C-16) and (C-17), and p, from Chapman, 
Eq. (C-11) and (C-12), for argon at a pressure of 0.1 atm. 
Other calculations were made, but are not shown in the 
figures. Predictions from Chapman's expression for the 
thermal conductivity k,? were about 50% lower than 
Spitzer's values shown in Fig. 2. Replacing the average 
distance d between particles by the Debye length Zd in 
IJ,.,~, Eq. (C-E),  resulted in predicted viscosity values p. 
which were about 5 to 10% below the values shown in 
Fig. 3. This small difference indicates the insensitivity of 
the prediction to the cutoff parameter chosen. 

In Fig. C-1 are shown predicted collision cross-sections, 
ion-atom QIA, atom-atom Q.4.i, and electron-atom Q E n  

for argon along with a brief description of how they were 
obtained. 

I 

SOURCE ]Ref.] BASIS 
I FROM IONIC MOBILITIES. 

~~ 

IO* io3 io4 IC 
TEMPERATURE, OK 

Fig. C-1. Collision cross-sections for argon 

The predicted thermal conductivity from the mixture 
rule is seen in Fig. 2 for argon at 0.1 atm to increase above 
the atomic value at about 5,000"K due to the contribution 
of the electrons; at about 15,000"K the prediction nearly 
equals the completely ionized value. 

As an example of a prediction from the Chapman- 
Enskog theory for a partially ionized gas, Ahtye's values 
(Ref. 22) for the second-order approximation2 to k are 
shown in Fig. 2 for argon. Though there is close agree- 
ment with Spitzer's values at large degrees of ionization 
as seen in Fig. 2 at 0.1 atm in particular, Ahtye has 

'The level of approximation refers to the number of terms retained 
in the expansion in Sonine polynominals of certain functions oc- 
curring in the distribution functions, e.g., see Ref. 16. 
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Gas' 

He 

Ne 
Ar 

Kr 

Xe 

pointed out that the second-order values of the thermal 
conductivity are smaller than Spitzer's values in the singly 
completely ionized limit by a factor of three. This dis- 
turbing feature has apparently been reconciled by deVoto 
(Ref. 23) who by going to the third-order approximation 
in the Chapman-Enskog theory found agreement with 
Spitzer's values. devoto's transport property predictions 
for argon cover a pressure range from 1-mm Hg to 2.5 
atm. Unfortunately for comparison purposes herein, 
deVoto did not make predictions at 0.1 atm. 

T = 300°K T = 1000°K T = 5000'K 

01 4 O I A O  O A A b  - 01.4 OIA" O.4A2C - OlA OI.4" OA.4' - 
cm2 ernz OAA cm2 cm 0 . 4 . 4  cm' cm' OIA 

73 X lo-'' 15 X 10.'' 4.9 64 x 12 x 5.3 55 x 7.5 7.3 x 10 'I' 

84 x 21 x 4.0 74 x 17 X 4.3 64 X 13 X 4.9 

149 X 3.6 138 X 4.5 125 6.0 ] :: I 5.6 I ii5 I 4.1 190 X 37 x 5.1 
184 X 

220 X 

4.5 156 X 3.5 171 X 

3.1 207 X 

In Fig. 3 the predicted viscosity exhibits the opposite 
trend as the thermal conductivity; a rapid decrease below 
the atomic value occurs at about 8,000"K, before it again 
rises at about 16,000°K to coincide nearly with the com- 
pletely ionized value. This decrease results from larger 
predicted cross-sections for ion-atom collisions than for 
atom-atom collisions, as seen in Fig. C-1. 

The effect of higher pressures is to shift the point 
at which the predicted values of thermal conductivity 
and viscosity differ from the atomic values to higher 
temperatures; for lower pressures, the shift is to lower tem- 
peratures. The effect of pressure can be seen, for example, 
in deVoto, Ref. 23, Fig. 14. 

From the predicted rise in thermal conductivity and 
decrease in viscosity the Prandtl number, p c , / k ,  is ex- 
pected to decrease with temperature; this trend is shown 
in Fig. 4 for argon at 0.1 atm. It is interesting to note that 
for a completely ionized gas the Prandtl number pre- 
dicted from Chapman's values of pLs and k," is equal to a 
small value of about 0.01. 

The ambipolar diffusion coefficient is usually related to 
the ion-atom diffusion coefficient 

Fay and Kemp (Ref. 2 )  found the following relation for 
a two-component mixture of atoms and ion-electron pairs 
by considering the momentum equation for diffusing 
atoms 

(C-19) 

This reduces to Eq. (C-18) for small ion mass fractions. 
The binary diffusion coefficient for rigid elastic spheres 
from Eq. (C-3) then allows the calculation of the Lewis 
number in conjunction with k obtained from the mixture 
rule. 

The predicted Lewis number, pDamcp/k, as seen in 
Fig. 4 for argon at 0.1 atm, is less than unity, with an 
average value of about 0.25 over the temperature range 
shown. This relatively low value, below that for atom- 
atom diffusion, results from a decrease in the ion-atom 
diffusion coefficient due to large predicted ion-atom 
collision cross-sections as seen in Fig. C-1. A useful expres- 
sion for the Lewis number in this regard can be obtained 
by combining Eqs. (C-4), (C-19 and 20) and using 
c,, = 5 /2R (1 + c , )  to give 

(C-21) 

In this form the Lewis number is seen to decrease both 
as the predicted thermal conductivity of the mixture ex- 
ceeds the atomic value, and for larger predicted ion- 
atom than atom-atom collision cross-sections. Values of 
Q,,t/QAA shown in Table C-1 indicate that predicted 
Lewis numbers for other monatomic gases would be in the 
same range as for argon. In this connection, a private 

Table C-1 . Rigid elastic-sphere atom-atom and ion-atom collision cross-sections for monatomic gases 
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communication with Dr. R. Brokaw, NASA, Lewis Re- 
search Center, revealed that the predicted Lewis numbers 
for incipient ionization in Ref. 24 are too large by roughly 
a factor of two due to neglect of charge transfer effects, 
and instead they are in the same range as those indicated 
herein. 

The preceeding discussion indicates a rather large pre- 
dicted dependence of the transport properties on gas 
composition at high temperatures. Whether such large 
variations for monatomic gases actually occur either in 
magnitude or at the temperatures so indicated perhaps 
can be decided by experimental measurements. 
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NOMENCLATURE 

defined in Eq. (C-10) 
mass fraction of the ith species 
dimensionless function, p p / p e p L P  

mixture specific heat at constant pressure, 

average distance between particles 
binary diffusion coefficient 
ambipolar diffusion coefficient 
electronic charge 
dimensionless velocity, u/u,  
defined in Eqs. (26-28) 
dimensionless total enthalpy, H , /  H,";  g:,, 
gradient at wall 
statistical weights or degeneracies of nt" 
energy level 
defined in Eq. (C-1) 
Planck's constant 
static enthalpy 
stagnation enthalpy, H + u'/2 
ionization energy 
thermal conductivity 
Debye length, ( ~ T / 4 ~ ; n ~ ; e ~ ) ' $  
Lewis number, pD,,,,,C,,/k 
particle mass 
molecular weight 
particle number density 
static preswre 
Prandtl number, p<,, k 
conductive heat flux, - k ;iT/ay 
diffusive energy flux, C p c , V , H ,  
total heat flux, g ,  + qd 
collision cross-section 
internal partition function 
body or channel radius 
universal gas constant 
gas constant, & ~ / Q ? I  
static temperature 
componcmts of velocity parallel and normal 
to wall 

Eq. ( 8 )  

v,  
wi 

X 

X ,  
Y 

ZI  

/-3 

1' 

6 

i 
F 

7 

K 

h 

A 

P 
V 

vo1 

t 
P 
U 

X 
w 

0 

Subscripts 
.I  atom species 

aw adiabatic wall condition 
e 

E electron species 
1 ion species 
o reservoir condition 
s singly, completely ioniwd 

conditions at free-stream vdge of boundary 
layer 

w wall condition 

diffusion velocity normal to wall of i"' species 
net production rate of it" species 
distance along wall 
mole fraction of i'l' species 
distance normal to wall 
dimemionless ion mass fraction, c, c, ,  
free-stream velocity gradient parameter, 
2< du, 
u, & 
frec-stream ion concentration gradient 

2[ dele 
parameter, -- c / ,  (16 
boundary layer thickness 
defined in Eq. (16) 
defined in Eq. (A-5) 
dimensionless coordinate normal to wall, 
Eq. (13) 
Boltzmann constant 
defined in Eq. (23) 
defined in Eq. (C-17) 
viscosity 
kinematic viscosity 
cutoff impact parameter, Eq. (C-12) 
coordinate along wall, Eq. (13) 
density 
defined in Eq. (B-10) 
defined in Eq. (29) 
exponent of viscosity-temperature relation 
defined in Eq. (31) 
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